જો બે ગણો $S$ અને $T$ માટે $S$ માં $21$ ઘટકો, $T$ માં $32$ ઘટકો અને $S$ $\cap \,T$ માં $11$ ઘટકો હોય, તો $S\, \cup$ $T$ માં કેટલા ઘટકો હશે ?
ગણના ગુણધર્મોનો ઉપયોગ કરીને સાબિત કરો કે $A \cup(A \cap B)=A$
છેદગણ શોધો : $A = \{ x:x$ એ $3$ ની ગુણિત પ્રાકૃતિક સંખ્યા છે. $\} ,$ $B = \{ x:x$ એ $6$ થી નાની પ્રાકૃતિક સંખ્યા છે. $\} $
જો $A$ અને $B$ એ $X$ હોય તો . . .
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.